Grassmann manifolds have been widely used to represent the geometry of feature spaces in a variety of problems in medical imaging and computer vision including but not limited to shape analysis, action recognition, subspace clustering and motion segmentation. For these problems, the features usually lie in a very high-dimensional Grassmann manifold and hence an appropriate dimensionality reduction technique is called for in order to curtail the computational burden. To this end, the Principal Geodesic Analysis (PGA), a nonlinear extension of the well known principal component analysis, is applicable as a general tool to many Riemannian manifolds. In this paper, we propose a novel framework for dimensionality reduction of data in Riemannian homogeneous spaces and then focus on the Grassman manifold which is an example of a homogeneous space. Our framework explicitly exploits the geometry of the homogeneous space yielding reduced dimensional nested sub-manifolds that need not be geodesic submanifolds and thus are more expressive. Specifically, we project points in a Grassmann manifold to an embedded lower dimensional Grassmann manifold. A salient feature of our method is that it leads to higher expressed variance compared to PGA which we demonstrate via synthetic and real data experiments.
翻译:在医学成像和计算机视觉的诸多问题中,人们广泛使用格拉斯曼元件代表地貌空间的几何特征,这在医学成像和计算机视觉的诸多问题中包括但不局限于形状分析、行动识别、子空间集群和运动分离等。对于这些问题,这些特征通常存在于一个高度的格拉斯曼元体中,因此需要一种适当的维度减少技术来减少计算负担。为此,作为众所周知的主要组成部分分析的非线性延伸的大地测量分析(大地测量分析)作为一般工具适用于许多里曼元体。在本文中,我们提出了一个新的框架,用于减少里曼同质空间中的数据的维度,然后侧重于格拉斯曼元体,这是一个同质空间的例子。我们的框架明确利用了同质空间的几何测量方法,以产生较少的自成形嵌巢的子磁场,而不需要地质学分层,因此更清晰。具体地说,我们用一个草本元元元元元体中的一些点作为嵌嵌入的低维度格拉斯曼元体。我们的方法的一个突出特征是,它导致通过合成实验来显示真实的变数。