This work describes the implementation of a data-driven approach for the reduction of the complexity of parametrical partial differential equations (PDEs) employing Proper Orthogonal Decomposition (POD) and Gaussian Process Regression (GPR). This approach is applied initially to a literature case, the simulation of the stokes problems, and in the following to a real-world industrial problem, inside a shape optimization pipeline for a naval engineering problem.
翻译:这项工作说明采用数据驱动方法,采用正正正正正正正方形分解和高西亚进程倒退,减少对称部分偏差方程的复杂性。 这种方法最初适用于文献案例,模拟石块问题,随后又适用于实际世界工业问题,即用于优化海上工程问题的机型管道。