In an upward planar 2-slope drawing of a digraph, edges are drawn as straight-line segments in the upward direction without crossings using only two different slopes. We investigate whether a given upward planar digraph admits such a drawing and, if so, how to construct it. For the fixed embedding scenario, we give a simple characterisation and a linear-time construction by adopting algorithms from orthogonal drawings. For the variable embedding scenario, we describe a linear-time algorithm for single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs. For the latter two classes, we make use of SPQR-trees and the notion of upward spirality. As an application of this drawing style, we show how to draw an upward planar phylogenetic network with two slopes such that all leaves lie on a horizontal line.
翻译:在用平面图绘制的向上平面图2平面图中,边缘是作为直线段绘制的,没有跨越两个不同的斜坡。我们调查一个给定的向上平面图是否承认这种图画,如果是,如何建造。对于固定嵌入情景,我们通过采用正方形图画的算法来简单描述特征和线性时间构造。对于变量嵌入情景,我们描述单源图谱的线性时算法、序列平面图谱的夸度时算法,以及一般平面图的固定参数可绘制算法。对于后两个类别,我们使用SPQR树和上螺旋概念。作为这种绘图风格的一种应用,我们展示如何用两个斜坡来绘制向上平面图的植物遗传学网络,所有斜坡都位于水平线上。