RRT* is an efficient sampling-based motion planning algorithm. However, without taking advantages of accessible environment information, sampling-based algorithms usually result in sampling failures, generate useless nodes, and/or fail in exploring narrow passages. For this paper, in order to better utilize environment information and further improve searching efficiency, we proposed a novel approach to improve RRT* by 1) quantifying local knowledge of the obstacle configurations during neighbour rewiring in terms of directional visibility, 2) collecting environment information during searching, and 3) changing the sampling strategy biasing toward near-obstacle nodes after the first solution found. The proposed algorithm RRT* by Local Directional Visibility (RRT*-LDV) better utilizes local known information and innovates a weighted sampling strategy. The accelerated RRT*-LDV outperforms RRT* in convergence rate and success rate of finding narrow passages. A high Degree-Of-Freedom scenario is also experimented.
翻译:RRT* 是一种高效的基于取样的运动规划算法,但是,在不利用无障碍环境信息的优势的情况下,基于取样的算法通常会导致取样失败、产生无用的节点和/或探索狭窄通道失败。对于本文件来说,为了更好地利用环境信息并进一步提高搜索效率,我们提出一种新的方法来改进RRT*,办法是:(1) 从方向可见度的角度量化邻居重新接线期间对障碍配置的当地知识;(2) 在搜索过程中收集环境信息;(3) 改变在第一个解决方案找到后偏向近真空节点的取样战略。由地方方向可见性(RRRT*-LDV)提出的RRT* 算法更好地利用了当地已知的信息,并发明了加权取样战略。加速RRT*-LDV在查找狭窄通道的趋同率和成功率方面比RRT* 加速RRT* 。