Food profiling is an essential step in any food monitoring system needed to prevent health risks and potential frauds in the food industry. Significant improvements in sequencing technologies are pushing food profiling to become the main computational bottleneck. State-of-the-art profilers are unfortunately too costly for food profiling. Our goal is to design a food profiler that solves the main limitations of existing profilers, namely (1) working on massive data structures and (2) incurring considerable data movement for a real-time monitoring system. To this end, we propose Demeter, the first platform-independent framework for food profiling. Demeter overcomes the first limitation through the use of hyperdimensional computing (HDC) and efficiently performs the accurate few-species classification required in food profiling. We overcome the second limitation by using an in-memory hardware accelerator for Demeter (named Acc-Demeter) based on memristor devices. Acc-Demeter actualizes several domain-specific optimizations and exploits the inherent characteristics of memristors to improve the overall performance and energy consumption of Acc-Demeter. We compare Demeter's accuracy with other industrial food profilers using detailed software modeling. We synthesize Acc-Demeter's required hardware using UMC's 65nm library by considering an accurate PCM model based on silicon-based prototypes. Our evaluations demonstrate that Acc-Demeter achieves a (1) throughput improvement of 192x and 724x and (2) memory reduction of 36x and 33x compared to Kraken2 and MetaCache (2 state-of-the-art profilers), respectively, on typical food-related databases. Demeter maintains an acceptable profiling accuracy (within 2% of existing tools) and incurs a very low area overhead.
翻译:食品特征分析是防止食品行业健康风险和潜在欺诈所需的任何食品监测系统的必要步骤。在排序技术方面的重大改进正在推动食品特征分析成为主要的计算瓶颈。不幸的是,对于食品特征分析来说,最先进的剖面设计成本太高。我们的目标是设计一个食品特征分析仪,解决现有剖面设计的主要局限性,即(1) 研究大规模数据结构,(2) 为实时监测系统带来大量数据流动。为此,我们提议Demeter,即第一个依赖平台的食品特征分析框架。Demeter通过使用超度计算(HDC)克服了第一个限制,并高效地进行了食品特征分析所需的精确的少数物种分类。我们的目标是设计一个食品特征分析仪(名为 Acc-Demeter), 解决现有剖面设计仪的主要局限性,即(1) 大规模数据结构和实时监测系统需要大量数据流动数据。为了改善低度数据数据分析,我们提议使用超度计算值计算单位的准确性能和能源消耗量,我们将Demeter的精确度数据分析(2x) 与基于其他工业模型的精确度数据分析系统进行一个精确度分析,我们用35的精确度数据模型进行。