This paper introduces a novel approach for multi-task regression that connects Kernel Machines (KMs) and Extreme Learning Machines (ELMs) through the exploitation of the Random Fourier Features (RFFs) approximation of the RBF kernel. In this sense, one of the contributions of this paper shows that for the proposed models, the KM and the ELM formulations can be regarded as two sides of the same coin. These proposed models, termed RFF-BLR, stand on a Bayesian framework that simultaneously addresses two main design goals. On the one hand, it fits multitask regressors based on KMs endowed with RBF kernels. On the other hand, it enables the introduction of a common-across-tasks prior that promotes multioutput sparsity in the ELM view. This Bayesian approach facilitates the simultaneous consideration of both the KM and ELM perspectives enabling (i) the optimisation of the RBF kernel parameter $\gamma$ within a probabilistic framework, (ii) the optimisation of the model complexity, and (iii) an efficient transfer of knowledge across tasks. The experimental results show that this framework can lead to significant performance improvements compared to the state-of-the-art methods in multitask nonlinear regression.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月22日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员