The applications of Artificial Intelligence (AI) surround decisions on increasingly many aspects of human lives. Society responds by imposing legal and social expectations for the accountability of such automated decision systems (ADSs). Fairness, a fundamental constituent of AI accountability, is concerned with just treatment of individuals and sensitive groups (e.g., based on sex, race). While many studies focus on fair learning and fairness testing for the classification tasks, the literature is rather limited on how to examine fairness in regression tasks. This work presents error parity as a regression fairness notion and introduces a testing methodology to assess group fairness based on a statistical hypothesis testing procedure. The error parity test checks whether prediction errors are distributed similarly across sensitive groups to determine if an ADS is fair. It is followed by a suitable permutation test to compare groups on several statistics to explore disparities and identify impacted groups. The usefulness and applicability of the proposed methodology are demonstrated via a case study on COVID-19 projections in the US at the county level, which revealed race-based differences in forecast errors. Overall, the proposed regression fairness testing methodology fills a gap in the fair machine learning literature and may serve as a part of larger accountability assessments and algorithm audits.


翻译:人工智能(AI)的应用围绕人类生活越来越多的许多方面的决策。社会的反应是对这种自动决策系统(ADS)的问责制强加法律和社会期望。公平是AI问责制的一个基本组成部分,它关心的是个人和敏感群体(例如基于性别、种族)的公正待遇。虽然许多研究侧重于对分类任务的公平学习和公平测试,但文献对于如何审查回归任务的公平性相当有限。这项工作将差错均等作为一个倒退公平概念提出,并采用一种测试方法,根据统计假设测试程序评估群体公平性。错误均等测试测试预测错误是否同样分布在敏感群体之间,以确定ADS是否公平。随后进行适当的调整测试,以比较若干统计数据中的群体,以探讨差异并查明受影响的群体。拟议方法的有用性和适用性通过对美国县一级的COVID-19预测的案例研究得到证明,该案例研究揭示了预测错误中的种族差异。总体而言,拟议的回归公平测试方法填补了公平机器学习文献中的空白,并可作为更广泛的问责评估和算法的一部分。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员