A novel method is proposed to learn an ensemble of logistic classification models in the context of high-dimensional binary classification. The models in the ensemble are built simultaneously by optimizing a multi-convex objective function. To enforce diversity between the models the objective function penalizes overlap between the models in the ensemble. We study the bias and variance of the individual models as well as their correlation and discuss how our method learns the ensemble by exploiting the accuracy-diversity trade-off for ensemble models. In contrast to other ensembling approaches, the resulting ensemble model is fully interpretable as a logistic regression model and at the same time yields excellent prediction accuracy as demonstrated in an extensive simulation study and gene expression data applications. An open-source compiled software library implementing the proposed method is briefly discussed.


翻译:在高维二进制分类中,提出了一套新颖的方法来学习后勤分类模型的组合。组合中的模型是同时通过优化多曲线目标功能而建立的。为了在模型之间加强多样性,目标功能会惩罚组合中的模型之间的重叠。我们研究了单个模型的偏差和差异及其相互关系,并讨论了我们的方法如何通过利用精确度-多样性权衡组合模型来学习组合。与其他组合方法不同,由此产生的组合模型可以完全解释为物流回归模型,同时产生在广泛的模拟研究和基因表达数据应用中所显示的极好的预测准确性。我们简要讨论了采用拟议方法的公开源汇编软件图书馆。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员