Since the Message Passing (Graph) Neural Networks (MPNNs) have a linear complexity with respect to the number of nodes when applied to sparse graphs, they have been widely implemented and still raise a lot of interest even though their theoretical expressive power is limited to the first order Weisfeiler-Lehman test (1-WL). In this paper, we show that if the graph convolution supports are designed in spectral-domain by a non-linear custom function of eigenvalues and masked with an arbitrary large receptive field, the MPNN is theoretically more powerful than the 1-WL test and experimentally as powerful as a 3-WL existing models, while remaining spatially localized. Moreover, by designing custom filter functions, outputs can have various frequency components that allow the convolution process to learn different relationships between a given input graph signal and its associated properties. So far, the best 3-WL equivalent graph neural networks have a computational complexity in $\mathcal{O}(n^3)$ with memory usage in $\mathcal{O}(n^2)$, consider non-local update mechanism and do not provide the spectral richness of output profile. The proposed method overcomes all these aforementioned problems and reaches state-of-the-art results in many downstream tasks.


翻译:信息传递( Graph) 神经网络( Neal Networks) 在应用到稀有图表时,对节点的数量具有线性复杂性,因此这些节点得到了广泛的实施,而且仍然引起了很大的兴趣,尽管它们的理论表达力仅限于第一个顺序的 Weisfeiler-Lehman 测试(1 WLL) (1-WLL) 。在本文中,我们显示,如果图形组合支持是用非线性定制功能的光学-光学素值设计成的,并且以任意的大型接收场遮盖,那么在理论上,MPNNN比1-WL测试更有力量,而且实验性比3-WL现有模型强大,同时仍然在空间上保持本地化。此外,通过设计自定义过滤功能,输出可以有各种频率组件,使聚合过程能够了解给定的输入图信号及其相关属性之间的不同关系。 到目前为止,最佳的3-L等量图形神经网络在计算复杂度上以$mathcal{O} (nQ3) $ $ 和记忆使用费比1- WL 3 3, 3 3 3 3 和3 3 3 3 3) 以美元为3 3 3- 3 3 3- mind remememememememe remememememememememe $=$=$=$= $\\\ = =$\\\\ =3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
15+阅读 · 2020年2月5日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
15+阅读 · 2020年2月5日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员