Satellite altimetry is a unique way for direct observations of sea surface dynamics. This is however limited to the surface-constrained geostrophic component of sea surface velocities. Ageostrophic dynamics are however expected to be significant for horizontal scales below 100~km and time scale below 10~days. The assimilation of ocean general circulation models likely reveals only a fraction of this ageostrophic component. Here, we explore a learning-based scheme to better exploit the synergies between the observed sea surface tracers, especially sea surface height (SSH) and sea surface temperature (SST), to better inform sea surface currents. More specifically, we develop a 4DVarNet scheme which exploits a variational data assimilation formulation with trainable observations and {\em a priori} terms. An Observing System Simulation Experiment (OSSE) in a region of the Gulf Stream suggests that SST-SSH synergies could reveal sea surface velocities for time scales of 2.5-3.0 days and horizontal scales of 0.5$^\circ$-0.7$^\circ$, including a significant fraction of the ageostrophic dynamics ($\approx$ 47\%). The analysis of the contribution of different observation data, namely nadir along-track altimetry, wide-swath SWOT altimetry and SST data, emphasizes the role of SST features for the reconstruction at horizontal spatial scales ranging from \nicefrac{1}{20}$^\circ$ to \nicefrac{1}{4}$^\circ$.
翻译:卫星测距是直接观测海平面动态的一种独特方式,但仅限于海平面速度中受地表限制的地质营养成分。但是,年龄营养动态对于10天以下的水平比例值而言,预计年龄营养动态将意义重大。海洋一般环流模型的同化可能只揭示出这一年龄营养成分的一小部分。在这里,我们探索一个基于学习的计划,以更好地利用观测到的海平面跟踪器,特别是海平面高度和海平面温度(SST)之间的协同作用,以更好地为海平面流提供信息。更具体地说,我们开发了一个4DVarreNet计划,利用可培训的观测和前期值值值值值值的变数据同化配方。 在海湾地区,观测系统模拟实验显示,SST-SSH的协同作用可以揭示2.5-3.0天的海平面速度,以及0.5美元/cic-0.7美元水平的海平面温度,包括Src_cial-rassyal-altra syle 数据比例分析S-Sal-Scial-Scialtral_ saltra sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_______al_al_al_assal_al_al_al_ assal_ assal_____________________________________________________________________________________________________________________________________________________________________________________________________