Truth discovery is a general name for a broad range of statistical methods aimed to extract the correct answers to questions, based on multiple answers coming from noisy sources. For example, workers in a crowdsourcing platform. In this paper, we consider an extremely simple heuristic for estimating workers' competence using average proximity to other workers. We prove that this estimates well the actual competence level and enables separating high and low quality workers in a wide spectrum of domains and statistical models. Under Gaussian noise, this simple estimate is the unique solution to the MLE with a constant regularization factor. Finally, weighing workers according to their average proximity in a crowdsourcing setting, results in substantial improvement over unweighted aggregation and other truth discovery algorithms in practice.
翻译:真相的发现是一系列统计方法的通用名称,这些统计方法旨在根据来自吵闹的源头的多种答案得出对问题的正确答案。例如,在众包平台中的工人。在本文中,我们认为,使用与其他工人的平均距离来估计工人的能力是极其简单的,我们证明,这很好地估计了实际的能力水平,并使得在广泛的领域和统计模型中能够将高低质量的工人分开。在高西亚噪音下,这一简单估计是用固定的正规化因素解决MLE的独特办法。最后,根据工人在众包环境中的平均距离来权衡工人,结果大大改进了没有加权的集合和其他实际发现真相的算法。