With the increase in the computation intensity of the chip, the mismatch between computation layer shapes and the available computation resource significantly limits the utilization of the chip. Driven by this observation, prior works discuss spatial accelerators or dataflow architecture to maximize the throughput. However, using spatial accelerators could potentially increase the execution latency. In this work, we first systematically investigate two execution models: (1) sequentially (temporally) launch one monolithic accelerator, and (2) spatially launch multiple accelerators. From the observations, we find that there is a latency throughput tradeoff between these two execution models, and combining these two strategies together can give us a more efficient latency throughput Pareto front. To achieve this, we propose spatial sequential architecture (SSR) and SSR design automation framework to explore both strategies together when deploying deep learning inference. We use the 7nm AMD Versal ACAP VCK190 board to implement SSR accelerators for four end-to-end transformer-based deep learning models. SSR achieves average throughput gains of 2.53x, 35.71x, and 14.20x under different batch sizes compared to the 8nm Nvidia GPU A10G, 16nm AMD FPGAs ZCU102, and U250. The average energy efficiency gains are 8.51x, 6.75x, and 21.22x, respectively. Compared with the sequential-only solution and spatial-only solution on VCK190, our spatial-sequential-hybrid solutions achieve higher throughput under the same latency requirement and lower latency under the same throughput requirement. We also use SSR analytical models to demonstrate how to use SSR to optimize solutions on other computing platforms, e.g., 14nm Intel Stratix 10 NX.
翻译:暂无翻译