Geometric data acquired from real-world scenes, e.g, 2D depth images, 3D point clouds, and 4D dynamic point clouds, have found a wide range of applications including immersive telepresence, autonomous driving, surveillance, etc. Due to irregular sampling patterns of most geometric data, traditional image/video processing methodologies are limited, while Graph Signal Processing (GSP) -- a fast-developing field in the signal processing community -- enables processing signals that reside on irregular domains and plays a critical role in numerous applications of geometric data from low-level processing to high-level analysis. To further advance the research in this field, we provide the first timely and comprehensive overview of GSP methodologies for geometric data in a unified manner by bridging the connections between geometric data and graphs, among the various geometric data modalities, and with spectral/nodal graph filtering techniques. We also discuss the recently developed Graph Neural Networks (GNNs) and interpret the operation of these networks from the perspective of GSP. We conclude with a brief discussion of open problems and challenges.
翻译:从实际世界景象(例如2D深度图像、3D点云和4D动态云)获得的几何数据已发现范围广泛的各种应用,包括暗地远程现场、自主驾驶、监视等。 由于大多数几何数据不规则的抽样模式,传统图像/视频处理方法有限,而信号处理界的一个快速开发领域 -- -- 图形信号处理(GSP) -- -- 使位于非常规域上的处理信号能够处理,并在从低层处理到高级分析的几何数据的许多应用中发挥关键作用。为了进一步推动这一领域的研究,我们以统一的方式,通过连接几何数据与图表之间的联系、各种几何数据模式以及光谱/光学图过滤技术,首次及时和全面地概述了普惠制的几何数据方法。我们还从普惠制的角度讨论最近开发的图形神经网络(GNNN),并解释这些网络的运作情况。我们最后简要地讨论了公开的问题和挑战。