Models trained on large unlabeled corpora of human interactions will learn patterns and mimic behaviors therein, which include offensive or otherwise toxic behavior and unwanted biases. We investigate a variety of methods to mitigate these issues in the context of open-domain generative dialogue models. We introduce a new human-and-model-in-the-loop framework for both training safer models and for evaluating them, as well as a novel method to distill safety considerations inside generative models without the use of an external classifier at deployment time. We conduct experiments comparing these methods and find our new techniques are (i) safer than existing models as measured by automatic and human evaluations while (ii) maintaining usability metrics such as engagingness relative to the state of the art. We then discuss the limitations of this work by analyzing failure cases of our models.


翻译:在大型未贴标签的人类互动关系中培训的模型将学习其中的模式和模仿行为,包括攻击性或其它有毒行为和不想要的偏见。我们调查了在开放域基因对话模式中减轻这些问题的各种方法。我们引入了新的人和模型在环形中培训更安全模型和评估这些模型的框架,以及一种在配置时不使用外部分类器在基因化模型中提炼安全考虑的新方法。我们对这些方法进行比较并发现我们的新技术(一)比现有模型更安全,以自动和人为评估来衡量,而(二)保持可使用性指标,例如与艺术状态有关的接触程度。然后我们通过分析模型的失败案例来讨论这项工作的局限性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
51+阅读 · 2021年7月9日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2020年1月27日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
Top
微信扫码咨询专知VIP会员