Deploying Intelligent reflecting surfaces (IRSs) to enhance wireless transmission is a promising approach. In this paper, we investigate large-scale multi-IRS-assisted multi-cell systems, where multiple IRSs are deployed in each cell. Different from the full-buffer scenario, the mutual interference in our system is not known a priori, and for this reason we apply the load coupling model to analyze this system. The objective is to minimize the total resource consumption subject to user demand requirement by optimizing the reflection coefficients in the cells. The cells are highly coupled and the overall problem is non-convex. To tackle this, we first investigate the single-cell case with given interference, and propose a low-complexity algorithm based on the Majorization-Minimization (MM) method to obtain a locally optimal solution. Then, we embed this algorithm into an algorithmic framework for the overall multi-cell problem, and prove its feasibility and convergence to a solution that is at least locally optimal. Simulation results demonstrate the benefit of IRS in time-frequency resource utilization in the multi-cell system.


翻译:部署智能反射表面(IRS)以加强无线传输是一个很有希望的方法。 在本文中, 我们调查了大型多IRS辅助多细胞系统, 在每个细胞中部署多个IRS。 不同于全面缓冲假设, 我们的系统中的相互干扰并不先验, 因此我们应用负载组合模型来分析这个系统。 目标是通过优化单元格的反射系数, 最大限度地减少用户需求所需的总资源消耗量。 细胞高度结合, 整体问题是非螺旋体。 要解决这个问题, 我们首先调查单细胞案例, 以给定干扰, 并提议一种基于多数化- 最小化( MMM) 方法的低兼容性算法, 以获得本地最佳解决方案 。 然后, 我们将这一算法嵌入一个总体多细胞问题的算法框架, 并证明它的可行性和趋同至少是局部最佳的解决方案。 模拟结果显示IRS在多细胞系统中的时间频率资源利用方面的好处 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
5+阅读 · 2019年9月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员