Deploying Intelligent reflecting surfaces (IRSs) to enhance wireless transmission is a promising approach. In this paper, we investigate large-scale multi-IRS-assisted multi-cell systems, where multiple IRSs are deployed in each cell. Different from the full-buffer scenario, the mutual interference in our system is not known a priori, and for this reason we apply the load coupling model to analyze this system. The objective is to minimize the total resource consumption subject to user demand requirement by optimizing the reflection coefficients in the cells. The cells are highly coupled and the overall problem is non-convex. To tackle this, we first investigate the single-cell case with given interference, and propose a low-complexity algorithm based on the Majorization-Minimization (MM) method to obtain a locally optimal solution. Then, we embed this algorithm into an algorithmic framework for the overall multi-cell problem, and prove its feasibility and convergence to a solution that is at least locally optimal. Simulation results demonstrate the benefit of IRS in time-frequency resource utilization in the multi-cell system.
翻译:部署智能反射表面(IRS)以加强无线传输是一个很有希望的方法。 在本文中, 我们调查了大型多IRS辅助多细胞系统, 在每个细胞中部署多个IRS。 不同于全面缓冲假设, 我们的系统中的相互干扰并不先验, 因此我们应用负载组合模型来分析这个系统。 目标是通过优化单元格的反射系数, 最大限度地减少用户需求所需的总资源消耗量。 细胞高度结合, 整体问题是非螺旋体。 要解决这个问题, 我们首先调查单细胞案例, 以给定干扰, 并提议一种基于多数化- 最小化( MMM) 方法的低兼容性算法, 以获得本地最佳解决方案 。 然后, 我们将这一算法嵌入一个总体多细胞问题的算法框架, 并证明它的可行性和趋同至少是局部最佳的解决方案。 模拟结果显示IRS在多细胞系统中的时间频率资源利用方面的好处 。