Nearest Neighbor Machine Translation (kNNMT) is a simple and effective method of augmenting neural machine translation (NMT) with a token-level nearest neighbor retrieval mechanism. The effectiveness of kNNMT directly depends on the quality of retrieved neighbors. However, original kNNMT builds datastores based on representations from NMT models, which would result in poor retrieval accuracy when NMT models are not good enough, leading to sub-optimal translation performance. In this paper, we propose PRED, a framework that leverages Pre-trained models for Datastores in kNN-MT. Better representations from pre-trained models allow us to build datastores of better quality. We also design a novel contrastive alignment objective to mitigate the representation gap between the NMT model and pre-trained models, enabling the NMT model to retrieve from better datastores. We conduct extensive experiments on both bilingual and multilingual translation benchmarks, including WMT17 English $\leftrightarrow$ Chinese, WMT14 English $\leftrightarrow$ German, IWSLT14 German $\leftrightarrow$ English, and IWSLT14 multilingual datasets. Empirical results demonstrate the effectiveness of PRED.


翻译:近邻机器翻译( kNNNMT) 是一个简单而有效的增强神经机器翻译( NMT) 的方法, 并有一个象征性的近邻检索机制。 kNNMT 的有效性直接取决于回收邻居的质量 。 但是, 原始 kNNMT 根据NMT 模型的表示方式建立数据储存, 这将使NMT模型不够好时检索准确性差, 导致亚最佳翻译性能 。 在本文中, 我们提议 PRED, 这个框架利用了 kNNN- MT 中的数据存储器的预培训模型。 预培训模型的更好表现让我们得以建立质量更高的数据储存器。 我们还设计了一个新的对比性调整目标, 以缩小NMT模型和预培训模型之间的代表差距, 使NMT模型能够从更好的数据储存处检索数据。 我们在双语和多语种翻译基准上进行了广泛的实验, 包括WMT17 $\ leftrightrow$ 中文、 WMT14 $leftrightrowroom 德文、 IWSLightrightrow $ 英文和 IWSLT14 多语言数据集的实效。

1
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月23日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员