In industrial manufacturing, modern high-tech equipment delivers an increasing volume of data, which exceeds the capacities of human observers. Complex data formats like images make the detection of critical events difficult and require pattern recognition, which is beyond the scope of state-of-the-art process monitoring systems. Approaches that bridge the gap between conventional statistical tools and novel machine learning (ML) algorithms are required, but insufficiently studied. We propose a novel framework for ML based indicators combining both concepts by two components: pattern type and intensity. Conventional tools implement the intensity component, while the pattern type accounts for error modes and tailors the indicator to the production environment. In a case-study from semiconductor industry, our framework goes beyond conventional process control and achieves high quality experimental results. Thus, the suggested concept contributes to the integration of ML in real-world process monitoring problems and paves the way to automated decision support in manufacturing.


翻译:在工业制造中,现代高技术设备提供了越来越多的数据,这超出了人类观察者的能力。图像等复杂的数据格式使得发现关键事件变得困难,需要模式的确认,这超出了最先进的过程监测系统的范围。需要缩小传统统计工具和新机器学习算法之间差距的方法,但研究不够充分。我们提出了基于基于ML的指标的新框架,将这两个概念分为两个组成部分:模式类型和强度。常规工具执行强度部分,而错误模式模式模式类型账户和指标适应生产环境。在半导体工业的案例研究中,我们的框架超出了常规过程控制的范围,实现了高质量的实验结果。因此,所建议的概念有助于将ML纳入现实世界过程监测问题,并为制造业自动决策支持铺平了道路。

0
下载
关闭预览

相关内容

模式识别是一个成熟的、令人兴奋的、快速发展的领域,它支撑着计算机视觉、图像处理、文本和文档分析以及神经网络等相关领域的发展。它与机器学习非常相似,在生物识别、生物信息学、多媒体数据分析和最新的数据科学等新兴领域也有应用。模式识别(Pattern Recognition)杂志成立于大约50年前,当时该领域刚刚出现计算机科学的早期。在这期间,它已大大扩大。只要这些论文的背景得到了清晰的解释并以模式识别文献为基础,该杂志接受那些对模式识别理论、方法和在任何领域的应用做出原创贡献的论文。 官网地址:http://dblp.uni-trier.de/db/conf/par/
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
115+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
115+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员