Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention based feed-forward network that explicitly leverages this observation. In particular, instead of modeling frame-wise attention via pose similarity, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences. In this context, we study the use of different types of attention, computed at joint, body part, and full pose levels. Aggregating the relevant past motions and processing the result with a graph convolutional network allows us to effectively exploit motion patterns from the long-term history to predict the future poses. Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions. Thanks to our attention model, it yields state-of-the-art results on all three datasets. Our code is available at https://github.com/wei-mao-2019/HisRepItself.
翻译:人类运动预测旨在预测未来人类构成的历史动因。无论是基于经常性或饲料向前进的神经网络,现有基于学习的方法都无法模拟人类运动往往重复的观察,即使是复杂的运动和烹饪活动也是如此。在这里,我们引入了基于关注的进化前网络,明确利用这一观察。特别是,我们提议通过模拟框架关注,而不是通过相似性来模拟框架关注,而是吸引运动关注,以捕捉当前运动背景与历史运动次序列之间的相似性。在这方面,我们研究不同类型关注的使用情况,在联合、身体部分和完整成形级别上计算。将以往的相关动议汇总起来,并用图表革命网络处理结果,使我们能够有效利用长期历史的运动模式来预测未来构成。我们在人类3.6M、AMAS和3DPW的实验证实了我们做法对于定期和非周期行动的好处。由于我们的注意模型,我们对所有三种数据集都产生了最新的结果。我们的代码可以在 https://github.com/weimaus-20IMS.