The generalised extreme value (GEV) distribution is a three parameter family that describes the asymptotic behaviour of properly renormalised maxima of a sequence of independent and identically distributed random variables. If the shape parameter $\xi$ is zero, the GEV distribution has unbounded support, whereas if $\xi$ is positive, the limiting distribution is heavy-tailed with infinite upper endpoint but finite lower endpoint. In practical applications, we assume that the GEV family is a reasonable approximation for the distribution of maxima over blocks, and we fit it accordingly. This implies that GEV properties, such as finite lower endpoint in the case $\xi>0$, are inherited by the finite-sample maxima, which might not have bounded support. This is particularly problematic when predicting extreme observations based on multiple and interacting covariates. To tackle this usually overlooked issue, we propose a blended GEV distribution, which smoothly combines the left tail of a Gumbel distribution (GEV with $\xi=0$) with the right tail of a Fr\'echet distribution (GEV with $\xi>0$) and, therefore, has unbounded support. Using a Bayesian framework, we reparametrise the GEV distribution to offer a more natural interpretation of the (possibly covariate-dependent) model parameters. Independent priors over the new location and spread parameters induce a joint prior distribution for the original location and scale parameters. We introduce the concept of property-preserving penalised complexity (P$^3$C) priors and apply it to the shape parameter to preserve first and second moments. We illustrate our methods with an application to NO$_2$ pollution levels in California, which reveals the robustness of the bGEV distribution, as well as the suitability of the new parametrisation and the P$^3$C prior framework.


翻译:一般极端值( GEV) 分布是一个三个参数组, 它描述一个独立且同样分布的随机变量序列的重新校正最大值的无症状行为。 如果形状参数 $\x1 值为零, GEV 分布没有限制支持, 而如果美元为正值, 限制分布是用无限的上端点但有限的下端点来进行。 在实际应用中, 我们假设 GEV 组是一个合理的近似点, 用于在区块之间分配最大值, 我们相应适应它。 这意味着 GEV 属性, 例如, 独立且分布值序列的有限低端值 $xxxi=0 。 如果形状参数为零, 则由限定的 Sample 值 分配为未受约束的支持, 而如果预测基于多个和互动的共变量的极端观察结果时, 则尤其有问题。 为了解决这个问题, 我们提议混合 GEEEV 分布, 将 GV 的第二个尾部( 与 $\xxi=0 值) 匹配的原始分配值( 我们的原始分配值值为前值, 将Frchecheet 分配值的当前分配值作为正值的底值, 格式, 格式的当前版本, 版本, 向前值向前值表示为美元。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
9+阅读 · 2017年10月17日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
9+阅读 · 2017年10月17日
Top
微信扫码咨询专知VIP会员