Screwdriving is one of the most popular industrial processes. As such, it is increasingly common to automate that procedure by using various robots. Even though the automation increases the efficiency of the screwdriving process, if the process is not monitored correctly, faults may occur during operation, which can impact the effectiveness and quality of assembly. Machine Learning (ML) has the potential to detect those undesirable events and limit their impact. In order to do so, first a dataset that fully describes the operation of an industrial robot performing automated screwdriving must be available. This report describes a dataset created using a UR3e series robot and OnRobot Screwdriver. We create different scenarios and introduce 3 types of anomalies to the process while all available robot and screwdriver sensors are continuously recorded. The resulting data contains 2042 samples of normal and anomalous robot operation. Brief ML benchmarks using this data are also provided, showcasing the data's suitability and potential for further analysis and experimentation.
翻译:螺旋桨是最受欢迎的工业工艺之一。 因此, 使用各种机器人使这一程序自动化越来越常见。 即使自动化提高了螺旋桨驱动过程的效率, 如果该过程没有正确监测, 操作过程中可能会发生故障, 这会影响组装的效果和质量。 机器学习( ML) 有可能检测这些不受欢迎的事件并限制其影响。 为了做到这一点, 首先必须提供一个数据集, 充分描述一个工业机器人进行自动螺旋桨操纵的操作。 本报告描述了一个用UR3系列机器人和OnRobot螺旋桨创建的数据集。 我们创建了不同的情况, 并在所有可用的机器人和螺旋桨传感器不断记录的情况下, 将三种异常情况引入该过程。 由此产生的数据包含2042个正常和异常机器人操作的样本。 同时提供使用这些数据的简要 ML 基准, 显示数据是否合适, 以及进一步分析和实验的可能性 。