Online communities and their host platforms are mutually dependent yet conflict-prone. When platform policies clash with community values, communities have resisted through strikes, blackouts, and even migration to other platforms. Through such collective actions, communities have sometimes won concessions but these have frequently proved temporary. Prior research has investigated strike events and migration chains, but the processes by which community-platform conflict unfolds remain obscure. How do community-platform relationships deteriorate? How do communities organize collective action? How do participants proceed in the aftermath? We investigate a conflict between the Stack Exchange platform and community that occurred in 2023 around an emergency arising from the release of large language models (LLMs). Based on a qualitative thematic analysis of 2,070 messages on Meta Stack Exchange and 14 interviews with community members, we surface how the 2023 conflict was preceded by a long-term deterioration in the community-platform relationship driven in particular by the platform's disregard for the community's highly-valued participatory role in governance. Moreover, the platform's policy response to LLMs aggravated the community's sense of crisis triggering the strike mobilization. We analyze how the mobilization was coordinated through a tiered leadership and communication structure, as well as how community members pivoted in the aftermath. Building on recent theoretical scholarship in social computing, we use Hirshman's exit, voice and loyalty framework to theorize the challenges of community-platform relations evinced in our data. Finally, we recommend ways that platforms and communities can institute participatory governance to be durable and effective.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员