We advance the understanding of robotic intervention in high-risk scenarios by examining their potential to distract and impede a school shooter. To evaluate this concept, we conducted a virtual reality study with 150 university participants role-playing as a school shooter. Within the simulation, an autonomous robot predicted the shooter's movements and positioned itself strategically to interfere and distract. The strategy the robot used to approach the shooter was manipulated -- either moving directly in front of the shooter (aggressive) or maintaining distance (passive) -- and the distraction method, ranging from no additional cues (low), to siren and lights (medium), to siren, lights, and smoke to impair visibility (high). An aggressive, high-distraction robot reduced the number of victims by 46.6% relative to a no-robot control. This outcome underscores both the potential of robotic intervention to enhance safety and the pressing ethical questions surrounding their use in school environments.


翻译:本研究通过考察机器人分散和阻碍校园枪手注意力的潜在能力,深化了对高风险场景中机器人干预机制的理解。为评估这一概念,我们开展了一项虚拟现实研究,招募150名大学生参与者扮演校园枪手角色。在模拟环境中,自主机器人通过预测枪手运动轨迹,采取战略性定位进行干扰和阻碍。研究对机器人接近枪手的策略进行了操控——包括直接移动至枪手正前方(主动干预)和保持距离(被动干预)两种模式,同时设置了从无附加提示(低强度)、警报与灯光提示(中强度)到警报、灯光及烟雾遮蔽视线(高强度)的分级干扰方案。实验数据显示,相较于无机器人干预的对照组,采用主动干预策略与高强度干扰方案的机器人使受害者数量减少了46.6%。这一结果既揭示了机器人干预提升安全性的潜力,也凸显了其在校园环境中应用所引发的紧迫伦理问题。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员