Machine learning on encrypted data has received a lot of attention thanks to recent breakthroughs in homomorphic encryption and secure multi-party computation. It allows outsourcing computation to untrusted servers without sacrificing privacy of sensitive data. We propose a practical framework to perform partially encrypted and privacy-preserving predictions which combines adversarial training and functional encryption. We first present a new functional encryption scheme to efficiently compute quadratic functions so that the data owner controls what can be computed but is not involved in the calculation: it provides a decryption key which allows one to learn a specific function evaluation of some encrypted data. We then show how to use it in machine learning to partially encrypt neural networks with quadratic activation functions at evaluation time, and we provide a thorough analysis of the information leaks based on indistinguishability of data items of the same label. Last, since most encryption schemes cannot deal with the last thresholding operation used for classification, we propose a training method to prevent selected sensitive features from leaking, which adversarially optimizes the network against an adversary trying to identify these features. This is interesting for several existing works using partially encrypted machine learning as it comes with little reduction on the model's accuracy and significantly improves data privacy.
翻译:加密数据方面的机器学习由于最近同质加密和安全多方计算方面的突破而引起人们的极大关注。 它允许在不牺牲敏感数据的隐私的情况下将计算外包给不信任的服务器。 我们提出一个实用框架, 进行部分加密和隐私保护预测, 将对抗性培训和功能加密结合起来。 我们首先提出一个新的功能加密计划, 以便有效地计算四边形函数, 使数据所有人控制可以计算但并不参与计算的内容 : 它提供一个解密密密密钥, 使得人们能够学习某些加密数据的具体功能评价。 然后我们展示如何在机器学习中使用它来部分加密神经网络, 并在评价时使用二次启动功能, 我们根据同一标签的数据项的不可分辨性来对信息泄漏进行彻底分析。 最后, 由于大多数加密计划无法处理用于分类的最后一个阈值操作, 我们提议了一种培训方法, 以防止选定的敏感特征被泄漏, 从而对试图识别这些特征的对手进行对抗性优化网络。 这对一些现有工作很有意思, 使用部分加密的机器的保密性学习模型来大幅改进数据的精确性。