Access to historical monuments' floor plans over a time period is necessary to understand the architectural evolution and history. Such knowledge bases also helps to rebuild the history by establishing connection between different event, person and facts which are once part of the buildings. Since the two-dimensional plans do not capture the entire space, 3D modeling sheds new light on the reading of these unique archives and thus opens up great perspectives for understanding the ancient states of the monument. Since the first step in the building's or monument's 3D model is the wall detection in the floor plan, we introduce in this paper the new and unique Versailles FP dataset of wall groundtruthed images of the Versailles Palace dated between 17th and 18th century. The dataset's wall masks are generated using an automatic approach based on multi directional steerable filters. The generated wall masks are then validated and corrected manually. We validate our approach of wall mask generation in state-of-the-art modern datasets. Finally we propose a U net based convolutional framework for wall detection. Our method achieves state of the art result surpassing fully connected network based approach.
翻译:为了了解建筑进化和历史,有必要在一个时期内访问历史古迹的楼层图案。这些知识基础还有助于重建历史,在各种事件、人和事实之间建立联系,这些曾经是建筑物的一部分。由于二维计划没有覆盖整个空间,3D模型为阅读这些独特的档案提供了新的光芒,从而为了解纪念碑的古老状态开辟了广阔的视野。由于建筑物或纪念碑3D模型的第一步是地面计划中的墙体探测,我们在本文件中引入了17世纪至18世纪之间Versails宫壁底图的新的和独特的凡尔赛FP数据集。该数据集的墙面罩是使用基于多方向可控过滤器的自动方法生成的。随后产生的墙面罩经过手动验证和校正。我们验证了在最先进的现代数据集中生成墙面罩的方法。我们最后提出一个基于 U 网络的墙体探测框架。我们的方法实现了艺术结果超过完全连接的网络方法。