Access to historical monuments' floor plans over a time period is necessary to understand the architectural evolution and history. Such knowledge bases also helps to rebuild the history by establishing connection between different event, person and facts which are once part of the buildings. Since the two-dimensional plans do not capture the entire space, 3D modeling sheds new light on the reading of these unique archives and thus opens up great perspectives for understanding the ancient states of the monument. Since the first step in the building's or monument's 3D model is the wall detection in the floor plan, we introduce in this paper the new and unique Versailles FP dataset of wall groundtruthed images of the Versailles Palace dated between 17th and 18th century. The dataset's wall masks are generated using an automatic approach based on multi directional steerable filters. The generated wall masks are then validated and corrected manually. We validate our approach of wall mask generation in state-of-the-art modern datasets. Finally we propose a U net based convolutional framework for wall detection. Our method achieves state of the art result surpassing fully connected network based approach.


翻译:为了了解建筑进化和历史,有必要在一个时期内访问历史古迹的楼层图案。这些知识基础还有助于重建历史,在各种事件、人和事实之间建立联系,这些曾经是建筑物的一部分。由于二维计划没有覆盖整个空间,3D模型为阅读这些独特的档案提供了新的光芒,从而为了解纪念碑的古老状态开辟了广阔的视野。由于建筑物或纪念碑3D模型的第一步是地面计划中的墙体探测,我们在本文件中引入了17世纪至18世纪之间Versails宫壁底图的新的和独特的凡尔赛FP数据集。该数据集的墙面罩是使用基于多方向可控过滤器的自动方法生成的。随后产生的墙面罩经过手动验证和校正。我们验证了在最先进的现代数据集中生成墙面罩的方法。我们最后提出一个基于 U 网络的墙体探测框架。我们的方法实现了艺术结果超过完全连接的网络方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
相关论文
Top
微信扫码咨询专知VIP会员