Humans learn from the occurrence of events in a different place and time to predict similar trajectories of events. We define Loosely Decoupled Timeseries (LDT) phenomena as two or more events that could happen in different places and across different timelines but share similarities in the nature of the event and the properties of the location. In this work we improve on the use of Recurring Neural Networks (RNN), in particular Long Short-Term Memory (LSTM) networks, to enable AI solutions that generate better timeseries predictions for LDT. We use similarity measures between timeseries based on the trends and introduce embeddings representing those trends. The embeddings represent properties of the event which, coupled with the LSTM structure, can be clustered to identify similar temporally unaligned events. In this paper, we explore methods of seeding a multivariate LSTM from time-invariant data related to the geophysical and demographic phenomena being modeled by the LSTM. We apply these methods on the timeseries data derived from the COVID-19 detected infection and death cases. We use publicly available socio-economic data to seed the LSTM models, creating embeddings, to determine whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to identify best-matching candidates for forecasting an evolving timeseries. Applying this method, we show an improvement in 10-day moving average predictions of disease propagation at the US County level.
翻译:人类从不同地点和时间发生的事件中吸取经验教训,以预测类似的事件轨迹。我们将低度分解的时间序列现象定义为在不同地点和不同时间跨时间序列中可能发生的两个或两个以上事件,但在事件性质和位置属性方面有相似之处。在这项工作中,我们改进了对回转神经网络(RNN)的使用,特别是长期短期内存(LSTM)网络的使用,使AI解决方案能够为LDT产生更好的时间序列预测。我们使用基于趋势的时间序列之间的类似措施,并引入反映这些趋势的嵌入。嵌入是该事件的性质,与LSTM结构一起,可以对事件的性质进行分组,从而确定类似的时间不一致事件的性质。在本文中,我们探索了从LSTM模型所建的地球物理和人口现象相关时间变化数据中观测多变式LSTM的方法。我们将这些方法应用于从COVID-19检测到死亡案例的时间序列中得出的时间序列数据。我们用公开可用的社会-经济序列数据来显示LSTM的种子预测方法。我们用这些模型来确定如何嵌入LS-ST模型。