While there has been significant progress towards developing NLU resources for Indic languages, syntactic evaluation has been relatively less explored. Unlike English, Indic languages have rich morphosyntax, grammatical genders, free linear word-order, and highly inflectional morphology. In this paper, we introduce Vy\=akarana: a benchmark of Colorless Green sentences in Indic languages for syntactic evaluation of multilingual language models. The benchmark comprises four syntax-related tasks: PoS Tagging, Syntax Tree-depth Prediction, Grammatical Case Marking, and Subject-Verb Agreement. We use the datasets from the evaluation tasks to probe five multilingual language models of varying architectures for syntax in Indic languages. Due to its prevalence, we also include a code-switching setting in our experiments. Our results show that the token-level and sentence-level representations from the Indic language models (IndicBERT and MuRIL) do not capture the syntax in Indic languages as efficiently as the other highly multilingual language models. Further, our layer-wise probing experiments reveal that while mBERT, DistilmBERT, and XLM-R localize the syntax in middle layers, the Indic language models do not show such syntactic localization.
翻译:虽然在开发印度语的NLU资源方面取得了显著进展,但比较较少地探讨了合成评估。与英语不同,印度语具有丰富的形态学、语法性别、自由线性单词顺序和高度垂直形态学。在本文中,我们引入了Vyakarana:印度语中无色绿色句的基准,用于多语言模式的合成评估。基准包括四项与语法有关的任务:Pos tagg、语系深入预测、语系特征标记和主题-语言协议。我们使用评估任务中的数据集来探索五种不同语系结构的多种语言模式,用于语言的合成税。由于其流行性,我们还在我们的实验中引入了一种代码转换设置。我们的结果显示,印度语模式(IndicBERT和MuriL)的象征级别和句级表达方式并没有将印度语系的合成税作为其他高度多种语言模式有效体现。此外,我们使用这些评估任务的数据集用于探索五种不同语系语言结构的多种语言模式的多种语言模式。由于其流行性,我们还没有将本地语言的层次和层次实验显示磁学模型。