This paper considers the Gaussian multiple-access channel (MAC) in the asymptotic regime where the number of users grows linearly with the code length. We propose efficient coding schemes based on random linear models with approximate message passing (AMP) decoding and derive the asymptotic error rate achieved for a given user density, user payload (in bits), and user energy. The tradeoff between energy-per-bit and achievable user density (for a fixed user payload and target error rate) is studied, and it is demonstrated that in the large system limit, a spatially coupled coding scheme with AMP decoding achieves near-optimal tradeoffs for a wide range of user densities. Furthermore, in the regime where the user payload is large, we also study the spectral efficiency versus energy-per-bit tradeoff and discuss methods to reduce decoding complexity at large payload sizes.
翻译:本文考虑了无药可治制度中的高斯多入口通道(MAC),用户数量随着代码长度线性增长。我们建议基于随机线性模型的高效编码办法,大致信息传递(AMP)解码,并得出特定用户密度、用户有效载荷(按位数计算)和用户能量的无线误差率。我们研究了(固定用户有效载荷和目标误差率)能源比比和可实现的用户密度(固定用户有效载荷和目标误差率)之间的取舍,并证明在大型系统限值中,与AMP解码的空间结合编码办法为广大用户密度实现了接近最佳的交换。此外,在用户有效载荷庞大的系统中,我们还研究了光谱效率与能源比交换率的取舍,并讨论了降低大型有效载荷大小的解码复杂性的方法。