Normalizing flows model complex probability distributions by combining a base distribution with a series of bijective neural networks. State-of-the-art architectures rely on coupling and autoregressive transformations to lift up invertible functions from scalars to vectors. In this work, we revisit these transformations as probabilistic graphical models, showing they reduce to Bayesian networks with a pre-defined topology and a learnable density at each node. From this new perspective, we propose the graphical normalizing flow, a new invertible transformation with either a prescribed or a learnable graphical structure. This model provides a promising way to inject domain knowledge into normalizing flows while preserving both the interpretability of Bayesian networks and the representation capacity of normalizing flows. We show that graphical conditioners discover relevant graph structure when we cannot hypothesize it. In addition, we analyze the effect of $\ell_1$-penalization on the recovered structure and on the quality of the resulting density estimation. Finally, we show that graphical conditioners lead to competitive white box density estimators.
翻译:通过将基流分布与一系列双向神经网络结合起来,使流模式的复杂概率分布正常化。 最先进的结构依赖于组合和自动递减转换, 以将不可倒置的函数从星际向向矢量移动。 在这项工作中, 我们将这些转换作为概率化的图形模型重新审视, 显示它们会通过预先定义的地形学和每个节点的可学习密度缩小到巴伊西亚网络。 从这一新的角度, 我们提出图形正态流, 这是一种新的不可倒置的转换, 包括一种指定或可学习的图形结构。 这个模型为将域知识注入正常流提供了一种有希望的方法, 同时保留巴伊斯网络的可解释性以及正常流的代表性能力。 我们显示, 图形调节器在无法对它进行缩放时会发现相关的图形结构 。 此外, 我们分析$\ ell_ 1美元对回收结构和由此得出的密度估计质量的影响。 最后, 我们显示图形调节器会导致竞争性的白箱密度测量器密度。