Differential evolution (DE) is an effective population-based metaheuristic algorithm for solving complex optimisation problems. However, the performance of DE is sensitive to the mutation operator. In this paper, we propose a novel DE algorithm, Clu-DE, that improves the efficacy of DE using a novel clustering-based mutation operator. First, we find, using a clustering algorithm, a winner cluster in search space and select the best candidate solution in this cluster as the base vector in the mutation operator. Then, an updating scheme is introduced to include new candidate solutions in the current population. Experimental results on CEC-2017 benchmark functions with dimensionalities of 30, 50 and 100 confirm that Clu-DE yields improved performance compared to DE.
翻译:差异进化(DE)是解决复杂的优化问题的一种有效的基于人口的计量经济学算法。 但是, DE的性能对突变操作员十分敏感。 在本文中, 我们提出一个新的 DE 算法( Clu-DE), 使用新型的集群变异操作员来提高 DE 的功效。 首先, 我们发现, 使用集群算法, 搜索空间中的优胜者组群, 并选择该组群中最好的候选解决方案作为变异操作员的基础矢量。 然后, 引入更新计划, 将新的候选解决方案纳入当前人口。 CEC- 2017 基准函数的实验结果与 DE 相比, 证实了 Clu- DE 与 DE 相比, 效果会提高 。