We propose an epidemic analysis framework for the outbreak prediction in the livestock industry, focusing on the study of the most costly and viral infectious disease in the swine industry -- the PRRS virus. Using this framework, we can predict the PRRS outbreak in all farms of a swine production system by capturing the spatio-temporal dynamics of infection transmission based on the intra-farm pig-level virus transmission dynamics, and inter-farm pig shipment network. We simulate a PRRS infection epidemic based on the shipment network and the SEIR epidemic model using the statistics extracted from real data provided by the swine industry. We develop a hierarchical factorized deep generative model that approximates high dimensional data by a product between time-dependent weights and spatially dependent low dimensional factors to perform per farm time series prediction. The prediction results demonstrate the ability of the model in forecasting the virus spread progression with average error of NRMSE = 2.5\%.
翻译:我们提议了一个流行病分析框架,用于牲畜工业的爆发预测,重点是研究猪业中最昂贵和病毒性传染病 -- -- PRRS病毒。利用这个框架,我们可以通过捕捉以农场内猪级病毒传播动态和农场间猪运输网络为基础的感染传播时空动态,预测所有农场猪生产系统的PRRS爆发。我们利用从猪业提供的实际数据中提取的统计数据,根据货运网络和SEIR流行病模型,模拟PRRS感染流行病。我们开发了一个等级化的深基因化模型,通过产品在时间依赖重量和空间依赖的低维系数之间接近高维数据,以进行每个农场时间序列的预测。预测结果显示模型在预测病毒传播过程中的能力,平均误差NRMSE=2.5 ⁇ 。