The proliferation of 3D scanning technology has driven a need for methods to interpret geometric data, particularly for human subjects. In this paper we propose an elegant fusion of regression (bottom-up) and generative (top-down) methods to fit a parametric template model to raw scan meshes. Our first major contribution is an intrinsic convolutional mesh U-net architecture that predicts pointwise correspondence to a template surface. Soft-correspondence is formulated as coordinates in a newly-constructed Cartesian space. Modeling correspondence as Euclidean proximity enables efficient optimization, both for network training and for the next step of the algorithm. Our second contribution is a generative optimization algorithm that uses the U-net correspondence predictions to guide a parametric Iterative Closest Point registration. By employing pre-trained human surface parametric models we maximally leverage domain-specific prior knowledge. The pairing of a mesh-convolutional network with generative model fitting enables us to predict correspondence for real human surface scans including occlusions, partialities, and varying genus (e.g. from self-contact). We evaluate the proposed method on the FAUST correspondence challenge where we achieve 20% (33%) improvement over state of the art methods for inter- (intra-) subject correspondence.
翻译:3D 扫描技术的扩散促使人们需要解释几何数据的方法,特别是针对人类主题的数据。在本文中,我们提出一种优雅的回归(自下而上)和基因化(自下而上)方法结合,以适应原始扫描模形的参数模板模型。我们的第一个主要贡献是内在的进化网网状U-net结构,它预测了点对模版表面的对应性。软体对称网络空间是新构建的碳酸盐空间的坐标。以欧洲相近为模范的通信为模型,既能为网络培训,又能为下一个算法步骤提供高效的优化。我们的第二个贡献是基因化优化算法,它使用U-net对应预测来指导一个参数性超近点登记。通过使用预先训练的人类表面参数模型,我们最充分地利用特定领域先前的知识。将中位网络与基因化模型配对成,使我们能够预测真实人类表面扫描的对应性,包括封闭性、部分和不同特性的对应性(e.g-genus) 。我们的第二个贡献是利用U-net通讯(我们从自我测试的20-FA-stex-stal-station) 的方法对20 a-stex) 进行我们如何评估。