In this work, our aim is to provide a structured answer in natural language to a complex information need. Particularly, we envision using generative models from the perspective of data-to-text generation. We propose the use of a content selection and planning pipeline which aims at structuring the answer by generating intermediate plans. The experimental evaluation is performed using the TREC Complex Answer Retrieval (CAR) dataset. We evaluate both the generated answer and its corresponding structure and show the effectiveness of planning-based models in comparison to a text-to-text model.
翻译:在这项工作中,我们的目标是为复杂的信息需求提供结构化的自然语言答案。特别是,我们设想从数据到文字的生成的角度使用基因模型。我们提议使用内容选择和规划管道,目的是通过制定中间计划来构建答案的结构。实验性评估使用TREC 复杂解答检索数据集进行。我们既评估生成的答案,又评估其相应的结构,并表明基于规划的模式相对于文本到文字模型的有效性。