To counter online abuse and misinformation, social media platforms have been establishing content moderation guidelines and employing various moderation policies. The goal of this paper is to study these community guidelines and moderation practices, as well as the relevant research publications to identify the research gaps, differences in moderation techniques, and challenges that should be tackled by the social media platforms and the research community at large. In this regard, we study and analyze in the US jurisdiction the fourteen most popular social media content moderation guidelines and practices, and consolidate them. We then introduce three taxonomies drawn from this analysis as well as covering over one hundred interdisciplinary research papers about moderation strategies. We identified the differences between the content moderation employed in mainstream social media platforms compared to fringe platforms. We also highlight the implications of Section 230, the need for transparency and opacity in content moderation, why platforms should shift from a one-size-fits-all model to a more inclusive model, and lastly, we highlight why there is a need for a collaborative human-AI system.


翻译:为了打击网上滥用和错误信息,社交媒体平台一直在制定内容温和准则,并采用各种温和政策。本文件的目的是研究这些社区指南和温和做法,以及相关的研究出版物,以查明社会媒体平台和整个研究界应当应对的研究差距、温和技术差异和挑战。在这方面,我们在美国辖区研究和分析最受欢迎的14种社交媒体温和准则和做法,并加以整合。我们随后从这一分析中引入了3个分类,并覆盖了100多份关于温和战略的跨学科研究论文。我们确定了主流社交媒体平台与边缘平台在内容温和方面采用的内容调和之间的差异。我们还强调了第230节的影响,即对透明度和内容温和不透明的必要性,为什么平台应该从一刀切的模式转向更具包容性的模式。最后,我们强调为什么需要合作的人类-AI系统。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
37+阅读 · 2021年8月2日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员