The expansion of Fiber-To-The-Home (FTTH) networks creates high costs due to expensive excavation procedures. Optimizing the planning process and minimizing the cost of the earth excavation work therefore lead to large savings. Mathematically, the FTTH network problem can be described as a minimum Steiner Tree problem. Even though the Steiner Tree problem has already been investigated intensively in the last decades, it might be further optimized with the help of new computing paradigms and emerging approaches. This work studies upcoming technologies, such as Quantum Annealing, Simulated Annealing and nature-inspired methods like Evolutionary Algorithms or slime-mold-based optimization. Additionally, we investigate partitioning and simplifying methods. Evaluated on several real-life problem instances, we could outperform a traditional, widely-used baseline (NetworkX Approximate Solver) on most of the domains. Prior partitioning of the initial graph and the presented slime-mold-based approach were especially valuable for a cost-efficient approximation. Quantum Annealing seems promising, but was limited by the number of available qubits.


翻译:扩大Fiber-to-the-Home(FTTH)网络会因昂贵的挖掘程序而产生高昂的成本。优化规划过程和尽量减少挖掘地球的成本,因此可以节省大量资金。从数学角度讲,FTH网络问题可以描述为施泰纳树的最低限度问题。尽管在过去几十年里已经对Steina树问题进行了深入调查,但在新的计算范式和新兴方法的帮助下,这一问题可能进一步优化。这项工作研究即将出现的技术,如Quantum Annaaling、模拟安纳拉和自然启发方法,如进化阿尔高斯或苗状的优化。此外,我们调查分解和简化方法。对几个实际存在的问题进行评估后,我们可以超越大多数领域传统的、广泛使用的基线(NetworkX Apload-Sloster),在对成本效率近似近似的近似近似方法进行分解之前,对于近似价值特别大。 Qantum Annailing似乎很有希望,但受现有平方数字的限制。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
26+阅读 · 2021年7月11日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
8+阅读 · 2018年10月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年11月14日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年7月11日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
8+阅读 · 2018年10月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员