In most interactive image generation tasks, given regions of interest (ROI) by users, the generated results are expected to have adequate diversities in appearance while maintaining correct and reasonable structures in original images. Such tasks become more challenging if only limited data is available. Recently proposed generative models complete training based on only one image. They pay much attention to the monolithic feature of the sample while ignoring the actual semantic information of different objects inside the sample. As a result, for ROI-based generation tasks, they may produce inappropriate samples with excessive randomicity and without maintaining the related objects' correct structures. To address this issue, this work introduces a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances and reliable structures based on only one image. For training for ROI, we propose to utilize the data coming from the original image being augmented and bring in a novel module to transform such augmented data into knowledge containing both structures and appearances, thus enhancing the model's comprehension of the sample. To learn the rest areas other than ROI, we employ binary masks to ensure the generation isolated from ROI. Finally, we set parallel and hierarchical branches of the mentioned learning process. Compared with other single image GAN schemes, our approach focuses on internal features including the maintenance of rational structures and variation on appearance. Experiments confirm a better capacity of our model on ROI-based image generation tasks than its competitive peers.


翻译:在大多数交互式图像生成任务中,鉴于用户感兴趣的区域(ROI),所产生的结果预计将在保持原始图像中正确和合理的结构的同时,在外观上有足够的多样性。如果只有有限的数据,这种任务就更具挑战性。最近提出的基因模型只用一个图像完成培训。最近提出的基因模型只用一个图像完成培训。它们非常关注样本的单体特征,而忽视样本中不同物体的实际语义信息。因此,对于基于ROI的生成任务,它们可能会产生不适当的样本,具有过度的竞争性直观性,并且不维护相关对象的正确结构。为了解决这个问题,这项工作引入了一个名为MOGOGAN的MOphorlogic-aware General Adversarial 网络,它只用一个图像来制作随机样本,具有不同的外观和可靠的结构。关于ROI的原始图像正在扩大,我们建议利用一个新模块将这种扩大的数据转换成包含结构和外观的知识,从而增强模型对样本的理解。为了了解,我们除了ROI以外的其它领域,我们用BI的双面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面罩,我们用它制作的图像的图像的图像结构,我们用原始结构的复制结构的图像结构学习了比级平级结构。最后,我们用SLORI平级结构的图像的图像的升级结构,我们学习了比级结构的升级结构。

0
下载
关闭预览

相关内容

CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员