We consider linear regression with covariates that are random elements in a general Hilbert space. We first develop a principal component analysis for Hilbert-space-valued covariates based on finite-dimensional projections of the covariance operator, and establish asymptotic linearity and joint Gaussian limits for the leading eigenvalues and eigenfunctions under mild moment conditions. We then propose a principal component regression framework that combines Euclidean and Hilbert-space-valued covariates, obtain root-n consistent and asymptotically normal estimators of the regression parameters, and establish the validity of nonparametric and wild bootstrap procedures for inference. Simulation studies with two- and three-dimensional imaging predictors demonstrate accurate recovery of eigenstructures, regression coefficients, and bootstrap coverage. The methodology is further illustrated with neuroimaging data, in both a standard regression setting and a precision-medicine formulation.
翻译:本文考虑协变量为一般希尔伯特空间中随机元素的线性回归问题。首先,基于协方差算子的有限维投影,我们发展了希尔伯特空间值协变量的主成分分析方法,并在温和矩条件下建立了主要特征值与特征函数的渐近线性性及联合高斯极限。随后,我们提出了一种结合欧几里得空间与希尔伯特空间值协变量的主成分回归框架,获得了回归参数的根号n相合且渐近正态的估计量,并确立了非参数与wild自助法推断程序的有效性。使用二维与三维成像预测因子的模拟研究验证了特征结构、回归系数及自助法覆盖率的准确恢复。该方法进一步通过神经影像数据进行了说明,包括标准回归设定与精准医学框架两种应用场景。