As the quality of optical sensors improves, there is a need for processing large-scale images. In particular, the ability of devices to capture ultra-high definition (UHD) images and video places new demands on the image processing pipeline. In this paper, we consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution. We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms. As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method. The core components of LLFormer are the axis-based multi-head self-attention and cross-layer attention fusion block, which significantly reduces the linear complexity. Extensive experiments on the new dataset and existing public datasets show that LLFormer outperforms state-of-the-art methods. We also show that employing existing LLIE methods trained on our benchmark as a pre-processing step significantly improves the performance of downstream tasks, e.g., face detection in low-light conditions. The source code and pre-trained models are available at https://github.com/TaoWangzj/LLFormer.
翻译:随着光学传感器质量的提高,需要处理大型图像,特别是设备捕捉超高定义(UHD)图像和视频的能力对图像处理管道提出了新的要求。在本文件中,我们考虑了低光图像增强的任务,并引入了一个包含4K和8K分辨率图像的大型数据库。我们进行了系统的基准研究,并对目前的LIE算法进行了比较。作为第二个贡献,我们引入了基于变压器的低光增强法LLFormer。LLFormer的核心组件是轴基多头自控和跨层注意聚合块,这大大减少了线性复杂性。关于新数据集和现有公共数据集的广泛实验表明,LLFormer超越了最新工艺方法。我们还表明,将按我们基准培训的现有LIEE方法作为预处理步骤,大大改进了下游任务的性能,例如,在低光度条件下进行面探测。源代码和预培训模型可在 https://gimer/W.org/Forz。