A large volume of remote sensing (RS) data has been generated with the deployment of satellite technologies. The data facilitates research in ecological monitoring, land management and desertification, etc. The characteristics of RS data (e.g., enormous volume, large single-file size and demanding requirement of fault tolerance) make the Hadoop Distributed File System (HDFS) an ideal choice for RS data storage as it is efficient, scalable and equipped with a data replication mechanism for failure resilience. To use RS data, one of the most important techniques is geospatial indexing. However, the large data volume makes it time-consuming to efficiently construct and leverage. Considering that most modern geospatial data centres are equipped with HDFS-based big data processing infrastructures, deploying multiple geospatial indices becomes natural to optimise the efficacy. Moreover, because of the reliability introduced by high-quality hardware and the infrequently modified property of the RS data, the use of multi-indexing will not cause large overhead. Therefore, we design a framework called Multi-IndeXing-RS (MIX-RS) that unifies the multi-indexing mechanism on top of the HDFS with data replication enabled for both fault tolerance and geospatial indexing efficiency. Given the fault tolerance provided by the HDFS, RS data is structurally stored inside for faster geospatial indexing. Additionally, multi-indexing enhances efficiency. The proposed technique naturally sits on top of the HDFS to form a holistic framework without incurring severe overhead or sophisticated system implementation efforts. The MIX-RS framework is implemented and evaluated using real remote sensing data provided by the Chinese Academy of Sciences, demonstrating excellent geospatial indexing performance.


翻译:随着卫星技术的部署,产生了大量遥感数据(RS),这些数据有助于生态监测、土地管理和荒漠化等方面的研究。这些数据有助于生态监测、土地管理和荒漠化等方面的研究。RS数据的特点(例如,数量庞大、单页大小庞大、要求有误差容忍度)使得Hadoop分发文件系统(HDFS)成为RS数据储存的理想选择,因为该系统效率高、可缩放,且配备了抗故障能力的数据复制机制。使用RS数据的最重要技术之一是地理空间指数化。然而,由于数据量大,数据量大有助于生态空间数据监测,现代地理空间数据中心的地理空间数据中心配备了基于HDFS的大型数据处理基础设施,采用多种地理空间指数的多索引化机制,使HDFS内部的高级地理空间指数化能力化工作在HDFS的顶端端上进行,使数据系统内部的地理空间动态统计系统内部数据可快速化。

0
下载
关闭预览

相关内容

Hadoop分布式文件系统(HDFS),是Apache Hadoop Core项目的一部分
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员