Clinical management of cancer has continuously evolved for several decades. Biochemical, molecular and genomics approaches have brought and still bring numerous insights into cancerous diseases. It is now accepted that some phenomena, allowed by favorable biological conditions, emerge via mechanical signaling at the cellular scale and via mechanical forces at the macroscale. Mechanical phenomena in cancer have been studied in-depth over the last decades, and their clinical applications are starting to be understood. If numerous models and experimental setups have been proposed, only a few have led to clinical applications. The objective of this contribution is to propose to review a large scope of mechanical findings which have consequences on the clinical management of cancer. This review is mainly addressed to doctoral candidates in mechanics and applied mathematics who are faced with the challenge of the mechanics-based modeling of cancer with the aim of clinical applications. We show that the collaboration of the biological and mechanical approaches has led to promising advances in terms of modeling, experimental design and therapeutic targets. Additionally, a specific focus is brought on imaging-informed mechanics-based models, which we believe can further the development of new therapeutic targets and the advent of personalized medicine. We study in detail several successful workflows on patient-specific targeted therapies based on mechanistic modeling.


翻译:数十年来,癌症的临床管理不断演变。生物化学、分子和基因组学方法已经并且仍然对癌症疾病带来许多深刻的见解。现在,人们已经认识到,一些现象是有利的生物条件所允许的,这些现象是通过细胞规模的机械信号和宏观规模的机械力量而出现的。过去几十年里,对癌症的机械现象进行了深入的研究,并开始理解其临床应用。如果提出了许多模型和实验装置,那么只有少数模型和实验装置导致了临床应用。这一贡献的目的是提议审查对癌症临床管理产生影响的大量机械发现。这一审查主要针对机械和应用数学的博士生,他们面临以临床应用为目的的基于机械的癌症模型的挑战。我们表明,生物和机械方法的协作已导致在模型、实验设计和治疗目标方面取得了有希望的进展。此外,还特别侧重于成像智能的机械模型,我们认为这些模型可以进一步开发新的治疗目标,并带来个人医学模型的出现。我们的研究主要是针对一些机械和应用数学的博士生,他们面临着临床应用的挑战。我们研究了一些针对临床应用的临床应用的临床的临床临床临床实验性研究。我们详细研究了一些针对病人的成功工作流程。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员