Human Activity Recognition (HAR) is considered a valuable research topic in the last few decades. Different types of machine learning models are used for this purpose, and this is a part of analyzing human behavior through machines. It is not a trivial task to analyze the data from wearable sensors for complex and high dimensions. Nowadays, researchers mostly use smartphones or smart home sensors to capture these data. In our paper, we analyze these data using machine learning models to recognize human activities, which are now widely used for many purposes such as physical and mental health monitoring. We apply different machine learning models and compare performances. We use Logistic Regression (LR) as the benchmark model for its simplicity and excellent performance on a dataset, and to compare, we take Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). Additionally, we select the best set of parameters for each model by grid search. We use the HAR dataset from the UCI Machine Learning Repository as a standard dataset to train and test the models. Throughout the analysis, we can see that the Support Vector Machine performed (average accuracy 96.33%) far better than the other methods. We also prove that the results are statistically significant by employing statistical significance test methods.
翻译:过去几十年,人类活动认识(HAR)被认为是一个有价值的研究课题。不同类型机器学习模型被用于此目的,这是通过机器分析人类行为的一部分。分析从可磨损的传感器获得的复杂和高尺寸的数据并非一件微不足道的任务。如今,研究人员大多使用智能手机或智能家庭传感器来捕捉这些数据。在我们的论文中,我们用机器学习模型来分析这些数据,以确认人类活动,而人类活动现在已广泛用于许多目的,例如身体和心理健康监测。我们使用不同的机器学习模型和比较性能。我们使用物流回归(LR)作为在数据集上简单和出色性能的基准模型,并进行比较,我们采用决策树(DT)、支持矢量机(SVM)、随机森林(Randoming Forest)和人工神经网络(ANN)。此外,我们通过网搜索为每个模型选择了最佳的参数组。我们用UCI机器学习数据库的HAR数据集作为标准数据集来培训和测试模型。我们在整个分析过程中看到,支持矢量机器的测试方法(平均精确度为96.33)比其他的统计方法更具有重要的意义。