Recent researches on robotics have shown significant improvement, spanning from algorithms, mechanics to hardware architectures. Robotics, including manipulators, legged robots, drones, and autonomous vehicles, are now widely applied in diverse scenarios. However, the high computation and data complexity of robotic algorithms pose great challenges to its applications. On the one hand, CPU platform is flexible to handle multiple robotic tasks. GPU platform has higher computational capacities and easy-touse development frameworks, so they have been widely adopted in several applications. On the other hand, FPGA-based robotic accelerators are becoming increasingly competitive alternatives, especially in latency-critical and power-limited scenarios. With specialized designed hardware logic and algorithm kernels, FPGA-based accelerators can surpass CPU and GPU in performance and energy efficiency. In this paper, we give an overview of previous work on FPGA-based robotic accelerators covering different stages of the robotic system pipeline. An analysis of software and hardware optimization techniques and main technical issues is presented, along with some commercial and space applications, to serve as a guide for future work.


翻译:最近对机器人的研究显示,从算法、机械学到硬件结构都有显著的改进。机器人,包括操纵器、脚步机器人、无人机和自主飞行器,现在被广泛应用于各种不同的情景中。然而,机器人算法的计算和数据复杂程度高,对其应用构成巨大挑战。一方面,CPU平台具有处理多种机器人任务的灵活度。GPU平台具有较高的计算能力和易于使用的开发框架,因此在一些应用中被广泛采用。另一方面,基于FPGA的机器人加速器正在变得日益具有竞争力,特别是在定位临界和限制电力的情景中。由于专门设计的硬件逻辑和算法内核,基于FPGA的加速器可以在性能和能效方面超过CPU和GPU。在本文中,我们概述了以前关于基于FPGA的机器人加速器的工作,覆盖了机器人系统管道的不同阶段。对软件和硬件优化技术和主要技术问题的分析,连同一些商业和空间应用,都作为未来工作的指南。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年2月4日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员