Biological systems, including human beings, have the innate ability to perform complex tasks in versatile and agile manner. Researchers in sensorimotor control have tried to understand and formally define this innate property. The idea, supported by several experimental findings, that biological systems are able to combine and adapt basic units of motion into complex tasks finally lead to the formulation of the motor primitives theory. In this respect, Dynamic Movement Primitives (DMPs) represent an elegant mathematical formulation of the motor primitives as stable dynamical systems, and are well suited to generate motor commands for artificial systems like robots. In the last decades, DMPs have inspired researchers in different robotic fields including imitation and reinforcement learning, optimal control,physical interaction, and human-robot co-working, resulting a considerable amount of published papers. The goal of this tutorial survey is two-fold. On one side, we present the existing DMPs formulations in rigorous mathematical terms,and discuss advantages and limitations of each approach as well as practical implementation details. In the tutorial vein, we also search for existing implementations of presented approaches and release several others. On the other side, we provide a systematic and comprehensive review of existing literature and categorize state of the art work on DMP. The paper concludes with a discussion on the limitations of DMPs and an outline of possible research directions.


翻译:生物系统,包括人类,具有本能的能力,能够以多才多艺和灵活的方式执行复杂的任务。感官分子控制的研究人员试图理解和正式界定这种固有属性。在几个实验发现的支持下,认为生物系统能够将基本运动单位结合并调整为复杂的任务,最终导致制定运动原始理论。在这方面,动态运动原始(DMPs)代表了机动原始的优雅数学公式,作为稳定的动态系统,非常适合为机器人等人工系统生成运动指令。在过去几十年中,DMPs激励了不同机器人领域的研究人员,包括模仿和强化学习、最佳控制、物理互动和人-机器人共同工作,产生了大量发表的论文。这项指导性调查的目标是双重的。一方面,我们用严格的数学术语介绍现有的DMPs(DMPs)配方,讨论每种方法的优点和局限性,以及实际执行的细节。在辅导方面,我们还寻求现有方法的实施,并发布一些DMPs的版本。在另一方面,我们将现有的文献和D-robal 的思路与现有文件的思路进行系统和全面分析。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员