Long document question answering is a challenging task due to its demands for complex reasoning over long text. Previous works usually take long documents as non-structured flat texts or only consider the local structure in long documents. However, these methods usually ignore the global structure of the long document, which is essential for long-range understanding. To tackle this problem, we propose Compressive Graph Selector Network (CGSN) to capture the global structure in a compressive and iterative manner. The proposed model mainly focuses on the evidence selection phase of long document question answering. Specifically, it consists of three modules: local graph network, global graph network and evidence memory network. Firstly, the local graph network builds the graph structure of the chunked segment in token, sentence, paragraph and segment levels to capture the short-term dependency of the text. Secondly, the global graph network selectively receives the information of each level from the local graph, compresses them into the global graph nodes and applies graph attention to the global graph nodes to build the long-range reasoning over the entire text in an iterative way. Thirdly, the evidence memory network is designed to alleviate the redundancy problem in the evidence selection by saving the selected result in the previous steps. Extensive experiments show that the proposed model outperforms previous methods on two datasets.


翻译:长期文档解答是一个艰巨的任务, 因为它要求长文本的复杂推理。 以往的工程通常需要长长的文件作为非结构平板文本, 或只在长文档中考虑本地结构。 但是, 这些方法通常忽略长文档的全球结构, 这对于长期理解至关重要 。 为了解决这个问题, 我们提议压缩图形选择网络( CGSN), 以压缩和迭接的方式捕捉全球结构 。 拟议的模型主要侧重于长文档问题解答的证据选择阶段 。 具体地说, 它由三个模块组成: 本地图形网络、 全球图形网络和证据存储网络。 首先, 本地图形网络以象征、 句子、 段落和 段段位构建块块的图形结构, 以获取文本的短期依赖性 。 其次, 全球图形网络有选择地从本地图形中接收每个级别的信息, 将其压缩到全球图形节点中, 并对全球图形节点进行图形关注, 以迭接方式构建整个文本的远程推理 。 第三, 证据存储网络的设计旨在减轻证据重复性模型问题, 以证据选择中的证据选择中的证据模式问题, 以保存前两个步骤, 显示前几个步骤 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员