Long document question answering is a challenging task due to its demands for complex reasoning over long text. Previous works usually take long documents as non-structured flat texts or only consider the local structure in long documents. However, these methods usually ignore the global structure of the long document, which is essential for long-range understanding. To tackle this problem, we propose Compressive Graph Selector Network (CGSN) to capture the global structure in a compressive and iterative manner. The proposed model mainly focuses on the evidence selection phase of long document question answering. Specifically, it consists of three modules: local graph network, global graph network and evidence memory network. Firstly, the local graph network builds the graph structure of the chunked segment in token, sentence, paragraph and segment levels to capture the short-term dependency of the text. Secondly, the global graph network selectively receives the information of each level from the local graph, compresses them into the global graph nodes and applies graph attention to the global graph nodes to build the long-range reasoning over the entire text in an iterative way. Thirdly, the evidence memory network is designed to alleviate the redundancy problem in the evidence selection by saving the selected result in the previous steps. Extensive experiments show that the proposed model outperforms previous methods on two datasets.
翻译:长期文档解答是一个艰巨的任务, 因为它要求长文本的复杂推理。 以往的工程通常需要长长的文件作为非结构平板文本, 或只在长文档中考虑本地结构。 但是, 这些方法通常忽略长文档的全球结构, 这对于长期理解至关重要 。 为了解决这个问题, 我们提议压缩图形选择网络( CGSN), 以压缩和迭接的方式捕捉全球结构 。 拟议的模型主要侧重于长文档问题解答的证据选择阶段 。 具体地说, 它由三个模块组成: 本地图形网络、 全球图形网络和证据存储网络。 首先, 本地图形网络以象征、 句子、 段落和 段段位构建块块的图形结构, 以获取文本的短期依赖性 。 其次, 全球图形网络有选择地从本地图形中接收每个级别的信息, 将其压缩到全球图形节点中, 并对全球图形节点进行图形关注, 以迭接方式构建整个文本的远程推理 。 第三, 证据存储网络的设计旨在减轻证据重复性模型问题, 以证据选择中的证据选择中的证据模式问题, 以保存前两个步骤, 显示前几个步骤 。