Automatic terrain recognition in Mars rover images is an important problem not just for navigation, but for scientists interested in studying rock types, and by extension, conditions of the ancient Martian paleoclimate and habitability. Existing approaches to label Martian terrain either involve the use of non-expert annotators producing taxonomies of limited granularity (e.g. soil, sand, bedrock, float rock, etc.), or rely on generic class discovery approaches that tend to produce perceptual classes such as rover parts and landscape, which are irrelevant to geologic analysis. Expert-labeled datasets containing granular geological/geomorphological terrain categories are rare or inaccessible to public, and sometimes require the extraction of relevant categorical information from complex annotations. In order to facilitate the creation of a dataset with detailed terrain categories, we present a self-supervised method that can cluster sedimentary textures in images captured from the Mast camera onboard the Curiosity rover (Mars Science Laboratory). We then present a qualitative analysis of these clusters and describe their geologic significance via the creation of a set of granular terrain categories. The precision and geologic validation of these automatically discovered clusters suggest that our methods are promising for the rapid classification of important geologic features and will therefore facilitate our long-term goal of producing a large, granular, and publicly available dataset for Mars terrain recognition.
翻译:火星漫游者图像中的自动地形识别不仅是航行方面的一个重要问题,而且对于有兴趣研究岩石类型的科学家来说也是一个重要的问题,此外,对于远古火星古地表气候和可居住性的条件也是一个重要的问题。标记火星地貌的现有方法要么涉及使用非专家的评分员,制作有限的颗粒类(如土壤、沙子、基岩、浮岩等)的分类,要么依靠一般级的发现方法,这些方法往往产生与地质分析无关的漫游部分和地貌等感知类。专家标记的包含颗粒地质/地貌地形类别的数据集是公众所罕见或无法获得的,有时需要从复杂的图表中提取相关的绝对信息。为了便利创建具有详细地形分类的数据集,我们提出了一种自我监督的方法,可以将沉积的图象组合在Crurioity rover(Mars科学实验室)上采集的图像中。我们随后对这些组群进行定性分析,并通过建立一套颗粒地层地形类别来描述其地质意义。因此,我们从复杂的地质地形类别中提取了一套具有前瞻性的重要的地质特征分类,因此,将可自动地表解的地貌的地貌的地貌测定和地貌测量图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图的大小将可加以识别图。