Artifacts on magnetic resonance scans are a serious challenge for both radiologists and computer-aided diagnosis systems. Most commonly, artifacts are caused by motion of the patients, but can also arise from device-specific abnormalities such as noise patterns. Irrespective of the source, artifacts can not only render a scan useless, but can potentially induce misdiagnoses if left unnoticed. For instance, an artifact may masquerade as a tumor or other abnormality. Retrospective artifact correction (RAC) is concerned with removing artifacts after the scan has already been taken. In this work, we propose a method capable of retrospectively removing eight common artifacts found in native-resolution MR imagery. Knowledge of the presence or location of a specific artifact is not assumed and the system is, by design, capable of undoing interactions of multiple artifacts. Our method is realized through the design of a novel volumetric transformer-based neural network that generalizes a \emph{window-centered} approach popularized by the Swin transformer. Unlike Swin, our method is (i) natively volumetric, (ii) geared towards dense prediction tasks instead of classification, and (iii), uses a novel and more global mechanism to enable information exchange between windows. Our experiments show that our reconstructions are considerably better than those attained by ResNet, V-Net, MobileNet-v2, DenseNet, CycleGAN and BicycleGAN. Moreover, we show that the reconstructed images from our model improves the accuracy of FSL BET, a standard skull-stripping method typically applied in diagnostic workflows.


翻译:磁共振扫描中的人工制品对放射学家和计算机辅助诊断系统来说都是一项严峻的挑战。 最常见的是, 人工制品是由病人的动作引起的, 但也可能来自设备特有的异常, 如噪音模式。 不管来源如何, 人工制品不仅可以使扫描毫无用处, 而且可能会诱发错误诊断; 例如, 人工制品可能伪装成肿瘤或其他异常现象。 回溯性人工制品修正(RAC) 是在扫描已经进行后删除人工制品的问题。 在这项工作中, 我们提出了一种方法, 能够追溯性地删除在本地分辨率MMM图像中发现的8种常见的手工艺品。 对特定工艺品的存在或位置的了解不会被假定, 而这个系统通过设计可以消除多种工艺品的相互作用。 我们的方法是通过设计一个新型的量变变换网络网络网络网络(RAC), 与Swin变异模型相比, 我们的方法可以追溯性地删除8个常见的直线图 。 (i) 本地的周期性变更精确性地展示了我们不断变换的变换的系统,, 更精确地展示了我们不断变造型的变型的变型的系统,, 显示我们更精确的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型系统,, 显示了我们的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型系统,, 更的变型的变型的变型的变型的变型的变型的变型的变型的变型的变型系统, 更的变型的变型的变型的变型的变型的变型的变型的变型的变型系统的变型系统的变型系统, 更的变型的变型的变型的变式的变型系统的变式的变式的变型的变型的变型的变型的变型的变型系统的变式的变式的变式的变型的变式的变式的变式的变型系统的变型的变型的变式的变型系统,, 的变型的变型的变型的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
33+阅读 · 2022年2月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员