Wave propagation problems are notoriously difficult to solve. Time-harmonic problems are especially challenging in mid and high frequency regimes. The main reason is the oscillatory nature of solutions, meaning that the number of degrees of freedom after discretisation increases drastically with the wave number, giving rise to large complex-valued problems to solve. Additional difficulties occur when the problem is defined in a highly heterogeneous medium, as is often the case in realistic physical applications. For time-discretised problems of Maxwell type, the main challenge remains the significant kernel in curl-conforming spaces, an issue that impacts on the design of robust preconditioners. This has already been addressed theoretically for a homogeneous medium but not yet in the presence of heterogeneities. In this review we provide a big-picture view of the main difficulties encountered when solving wave propagation problems, from the first step of their discretisation through to their parallel solution using two-level methods, by showing their limitations on a few realistic examples. We also propose a new preconditioner inspired by the idea of subspace decomposition, but based on spectral coarse spaces, for curl-conforming discretisations of Maxwell's equations in heterogeneous media.
翻译:在中频和高频系统中,时间调和问题特别具有挑战性。主要的原因是解决方案的分解性质,这意味着随着波数的增加,离散后自由程度随着波数的增加而急剧增加,从而导致大量复杂的问题需要解决。如果问题在一个高度多样化的介质中界定,就会出现更多的困难,在现实的物理应用中,情况往往是如此。对于时间分解的Maxwell类型的问题,主要的挑战仍然是曲流成形空间中的重要内核,这个问题对稳健的前提条件设计产生了影响。这个问题已经在理论上处理过一个同质的介质,但还没有出现异质性。在本次审查中,我们对在解决波传播问题时遇到的主要困难提供了一种大视角,从离散问题的第一个步骤到使用两种层次的方法的平行解决办法,通过几个现实的例子来显示其局限性。我们还提出了一个新的先决条件,它受到子空间分解定位概念的启发,但以光谱质质的介质空间为基础,用于在离质的介质的介质化中进行分解式化。