Sturm's Theorem is a fundamental 19th century result relating the number of real roots of a polynomial $f$ in an interval to the number of sign alternations in a sequence of polynomial division-like calculations. We provide a short direct proof of Sturm's Theorem, including the numerically vexing case (ignored in many published accounts) where an interval endpoint is a root of $f$.
翻译:Sturm 的定理是19世纪一个根本性的结果,它涉及一个多面美元的实际根数,与一个多面差的计算序列中标志交替数之间的间隔。我们提供了一个简短的Sturm 定理的直接证明,包括一个数字性令人困扰的个案(在许多已公布的账户中被忽略 ), 其中间断端点是美元之根。