Large language models (LLMs) produce context inconsistency hallucinations, which are LLM generated outputs that are misaligned with the user prompt. This research project investigates whether prompt engineering (PE) methods can mitigate context inconsistency hallucinations in zero-shot LLM summarisation of scientific texts, where zero-shot indicates that the LLM relies purely on its pre-training data. Across eight yeast biotechnology research paper abstracts, six instruction-tuned LLMs were prompted with seven methods: a base- line prompt, two levels of increasing instruction complexity (PE-1 and PE-2), two levels of context repetition (CR-K1 and CR-K2), and two levels of random addition (RA-K1 and RA-K2). Context repetition involved the identification and repetition of K key sentences from the abstract, whereas random addition involved the repetition of K randomly selected sentences from the abstract, where K is 1 or 2. A total of 336 LLM-generated summaries were evaluated using six metrics: ROUGE-1, ROUGE-2, ROUGE-L, BERTScore, METEOR, and cosine similarity, which were used to compute the lexical and semantic alignment be- tween the summaries and the abstracts. Four hypotheses on the effects of prompt methods on summary alignment with the reference text were tested. Statistical analysis on 3744 collected datapoints was performed using bias-corrected and accelerated (BCa) bootstrap confidence intervals and Wilcoxon signed-rank tests with Bonferroni-Holm correction. The results demonstrated that CR and RA significantly improve the lexical alignment of LLM-generated summaries with the abstracts. These findings indicate that prompt engineering has the potential to impact hallucinations in zero-shot scientific summarisation tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员