Implementing fully automatic unmanned surface vehicles (USVs) monitoring water quality is challenging since effectively collecting environmental data while keeping the platform stable and environmental-friendly is hard to approach. To address this problem, we construct a USV that can automatically navigate an efficient path to sample water quality parameters in order to monitor the aquatic environment. The detection device needs to be stable enough to resist a hostile environment or climates while enormous volumes will disturb the aquaculture environment. Meanwhile, planning an efficient path for information collecting needs to deal with the contradiction between the restriction of energy and the amount of information in the coverage region. To tackle with mentioned challenges, we provide a USV platform that can perfectly balance mobility, stability, and portability attributed to its special round-shape structure and redundancy motion design. For informative planning, we combined the TSP and CPP algorithms to construct an optimistic plan for collecting more data within a certain range and limiting energy restrictions.We designed a fish existence prediction scenario to verify the novel system in both simulation experiments and field experiments. The novel aquaculture environment monitoring system significantly reduces the burden of manual operation in the fishery inspection field. Additionally, the simplicity of the sensor setup and the minimal cost of the platform enables its other possible applications in aquatic exploration and commercial utilization.
翻译:有效收集环境数据,同时保持平台稳定和环境友好,很难解决这一问题。为了解决这一问题,我们建造了一个USV, 能够自动通过高效途径对水质参数进行抽样,以监测水环境。检测装置需要足够稳定,以抵御敌对环境或气候,同时大量破坏水产养殖环境。同时,规划一个有效的信息收集路径,需要处理能源限制与覆盖区域信息数量之间的矛盾。为了应对上述挑战,我们提供了一个USV平台,能够完全平衡其特殊的圆形结构和冗余力运动设计所决定的流动、稳定性和可移动性。为了信息化的规划,我们将TSP和CPP算法结合起来,以构建一个乐观的计划,以便在一定范围内收集更多数据并限制能源限制。我们设计了一个鱼类存在预测方案,以核查模拟实验和实地实验的新系统。新的水产养殖环境监测系统极大地减轻了渔业检查领域手工操作的负担。此外,传感器设置的简单性以及水上平台的最小成本也使得其他应用成为可能。