Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We validate the proposed method in simulation with an inverted pendulum in multiple experimental configurations.
翻译:现代非线性控制理论试图赋予具有稳定性和安全等属性的系统,并成功地在不同领域进行了部署。尽管取得了这一成功,但模型不确定性仍然是确保基于模型的控制器向现实世界系统转移的重大挑战。本文件利用控制证书功能(CCF)开发了一种数据驱动的稳健控制合成方法,在存在模型不确定性的情况下使用控制证书功能(CCF),从而产生了一个基于组合的优化控制器,以实现稳定和安全等属性。我们框架的一个重要好处是细微的数据依赖保证,原则上可以产生样本高效的数据收集方法,而这种方法不需要完全确定输入到状态的关系。这项工作是处理非线性控制理论和非参数学习(理论和应用中)交汇的重要问题的起点。我们验证了在多个实验配置中以反向的中点进行模拟的方法。